If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+30t-220=0
a = 16; b = 30; c = -220;
Δ = b2-4ac
Δ = 302-4·16·(-220)
Δ = 14980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14980}=\sqrt{4*3745}=\sqrt{4}*\sqrt{3745}=2\sqrt{3745}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{3745}}{2*16}=\frac{-30-2\sqrt{3745}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{3745}}{2*16}=\frac{-30+2\sqrt{3745}}{32} $
| −8x^2−15x+2=0 | | 13r+6=5r | | 7t+-t-5=5+-3 | | (x+4)^4/3=16 | | −8x2−15x+2=0 | | 5x-16=-71 | | 20=-x-3x-7 | | 1/2v+2=1/4(2v+8) | | 3x-21=-21 | | 8x-2(x+9)=(x+47) | | 8x-2(x+9)=(x+11) | | 8t^2+30t-110=0 | | 209=6.5x+2x | | 3*5^x+5^(x+1)=8*5^3 | | Y=6.5x+2x | | 1-2(2m-3)=-5 | | 2x+3=4x+28 | | 180-(2x-12)+30+x=180 | | 2x^2+72=-12x | | 1-2(4y-3)=-3 | | 8t^2-30t-110=0 | | K÷13=x2÷3 | | 8t^2+30t+110=0 | | 1/5y+1/6=4/5y-5/6 | | g^2–4g–12=0 | | (1/5)y+1/6=(4/5)y-5/6 | | 25=5x+5=30 | | (1/5)y+(1/6)=(4/5)y-(5/6) | | 7x/2=19 | | 3-6(x+1)=21 | | 2(3x-1)+12=4(x-3)-(3x+4) | | x*2x-1=300 |